

FMI co-simulation 1D-3D SIMSEN-CFX

Sébastien ALLIGNE, Nathan VEUTHEY, Antoine BÉGUIN, Nicolas RUCHONNET, Christophe NICOLET

Power Vision Engineering Sàrl Rue des Jordils 40 CH-1025 St-Sulpice Switzerland

September 12th 2024

Co-Simulation 1D-3D

Interest : ۲

- Hydraulic systems may experience excitation caused by complex flow patterns within various components of the system
 - Characterization of the excitation source by 3D simulations
 - → System response with 1D compressible model
- Co-simulation of interest if strong interaction exists between excitation source and hydraulic system response in case of resonance or instability phenomena \rightarrow excitation source modified by the hydraulic system response

Numerical Tools and Setup

- SIMSEN :
 - ✓ 1D differential equations of momentum and continuity for compressible fluid in pipes
 - ✓ Transient scheme is Runge-Kutta 4th order
 - → Explicit scheme
- CFX :
 - ✓ Reynolds Averaged Navier Stokes Equations
 - ✓ Fluid compressibility defined by barotropic law
 - ✓ Homogeneous ZGB cavitation model with heat transfer model as isothermal
 - ✓ SST turbulence model
 - ✓ Transient scheme is second backward Euler
 - → Implicit scheme with maximum of 10 internal coefficient loops
- ANSYS-CFX can run co-simulations (from 2021R2) using Functional Mock-up Interface (FMI) technology

Water Hammer Case Study

 $CFL = \frac{a \cdot \Delta t}{\Delta t}$

- Pipe characteristics:
 - ✓ L = 480m, D = 0.5m, λ = 0.089
 - ✓ 2 parts: 1D and 3D
 - ✓ 3 wave speed combinations:
 - #1: a_{1D} = a_{3D} = 1'444 m/s
 - #2: a_{1D} = a_{3D} = 150 m/s
 - #3: a_{1D} = 1'444 m/s & a_{3D} = 150 m/s
- Co-simulation:
 - Between 1D pipe and 3D pipe & perturbation in the 3D domain
 - ✓ Time step simulation: $dt_{#1} = 0.0015s$, $dt_{#2} = 0.015s$ and $dt_{#3} = 0.003 s$
 - \checkmark No subcycling \Rightarrow exchanged data at each time step
 - ✓ 1D model :
 - L_{1D} = 0.8L = 383m
 - Nb = 79 \rightarrow dx = 4.85m
 - CFL_{#1} = 0.446, CFL_{#2} = 0.464, CFL_{#3} = 0.969
 - ✓ 3D model :
 - L_{3D} = 0.2L = 97m
 - dx = 0.4m
 - CFL_{#1} = 5.411, CFL_{#2} = 5.625, CFL_{#3} = 1.125

Perturbation: static pressure elevation at the outlet of the 3D domain

Exchanged Data

Validation of co-simulation

- Comparison with the reference 1D SIMSEN simulation
 - → Pressure fluctuations in the middle of the pipe, i.e. in 1D domain

#1 : a_{1D} = a_{3D} = 1'444 m/s

#2 : a_{1D} = a_{3D} = 150 m/s

#3 : a_{1D} = 1'444 m/s & a_{3D} = 150 m/s

POWER VISION FNGINFFRING Vortex Shedding Resonance Case Study

Parameter	Symbol	Unit	Value
Pipe length	L	m	1.05
Pipe width	W	mm	40
Hydraulic diameter	D_h	mm	40
Wall thickness	e	$\mathbf{m}\mathbf{m}$	2
Position of bluff body	x_{bb}/L	-	0.75
Diameter of bluff body	D	mm	20
Cavitation free natural frequency	f_n	Hz	96.5
Measured cavitation incipience	σ_i	-	9
Reynolds number at pipe inlet	Re	-	60'000
Wave speed	a	m/s	202.65

- Resonance in square pipe due to von Karman vortex shedding
 - Cavitating condition or not with setup of vacuum pump
 - ✓ In non-cavitating condition resonance occurs with 1st pipe's eigenmode
 - \checkmark In cavitating condition, resonance occurs with 2nd pipe's eigenmode
- Test case setup by Ruchonnet N. at EPFL (PhD N°4778 -2010) to validate coupled simulation without FMI protocol 7

Domains and Exchanged Data

8

Co-simulations Operating Conditions

• 4 co-simulations performed:

- Non-cavitating and out of resonance condition
- ✓ Non-cavitating and resonance condition
- \checkmark Cavitating and out of resonance condition
- Cavitating and resonance condition
- Targeted resonance with :
 - ✓ 1st eigenmode in non-cavitating condition
 - 2nd eigenmode in cavitating condition which frequency is decreased due to cavitation

			1		2
[Variable	Unit	Out of resonance		In resonance
Ē	С	m/s	3		2.54
	fs/fn	-	1.18		0.99
	St	-	0.38		0.38
	σ_{corr}/σ_i	-	1.96		1.40
-					
(3	_	4	
Experimentally expected		1 Out of resonance		In resonance	
Found numerically as		s Near resonance		Out of resonance	
Variable Unit					
C m/s		3		3.27	
fs	$/f_n$	-	1.34		1.59
	St	-	0.43		0.47
σ_{con}	r_r/σ_i	-	0.84		0.78

 $St = \frac{f \cdot D}{C}$ $\sigma = \frac{p - p_v}{\frac{1}{2}\rho C^2}$

9

POWER VISION ENGINEERING Non-cavitating and out of resonance conditions¹

Pressure coefficient fluctuations c_p' at L=L_{TOT} = 0.5

Power spectrum density (PSD), time history and waterfall diagram

POWER VISION ENGINEERING Non-cavitating and resonance conditions¹

Pressure coefficient fluctuations c_p' at L=L_{TOT} = 0.5

Power spectrum density (PSD), time history and waterfall diagram

Non-cavitating and resonance conditions⁽²⁾

- Comparison between co-simulation and CFD simulation without coupling :
 - ✓ No difference in velocity profile
 - ✓ Pressure pulsation due to resonance with 1D system with the co-simulation

Cavitating condition 3 4

Pressure coefficient fluctuations c_p' at L=L_{TOT} = 0.5 Power spectrum density (PSD), time history and waterfall diagram

Cavitating condition ^{(3) (4)}

Waterfall diagram of Power spectrum density (PSD)

Bluff body position

f/fn

L/L_{tot}

2

Bluff body position

L/L_{tot}

Bluff body position

f1st eigen

 f/f_n f2nd eigen

L/L tot

f1st eigen

f/fn

f2nd eigen

Cavitating condition

Pressure coefficient fluctuations c_p' at L=L_{TOT} = 0.5 Power spectrum density (PSD), time history and waterfall diagram

- Comparison between co-simulation and CFD simulation without coupling :
 - ✓ No difference in velocity profile
 - ✓ Pressure pulsation due to resonance with 1D system with the co-simulation is not visible like in non-cavitating condition since maximum amplitude of the eigenmode is located in the 1D domain (L/Ltot ≈ 0.4)

Conclusions

- FMI co-simulation between SIMSEN and CFX is now operational. Two case studies have been investigated to validate robustness of the FMI protocol :
 - Pressure wave propagation through the numerical domains
 - Resonance in cavitating condition with strong interaction between 1D model and 3D model including the excitation source
- Co-simulation could be of interest for any CFD simulations having unsteady and realistic boundary conditions driven by the 1D hydraulic system like surge tank device
- Co-simulation with SIMSEN could be extended to other physics like electromagnetics with Finite Element Analysis in electrical machines

Thank you for your attention!

Power Vision Engineering Sarl

Rue des Jordils 40 CH-1025 St-Sulpice Switzerland <u>www.powervision-eng.ch</u> info@powervision-eng.ch

POWER VISION ENGINEERING

Solutions & Expertise for Hydropower Transients and Operation