

FMI co-simulation 1D-3D SIMSEN-CFX

Sébastien ALLIGNE, Nathan VEUTHEY, Antoine BÉGUIN, Nicolas RUCHONNET, Christophe NICOLET

Power Vision Engineering Sàrl Rue des Jordils 40 CH-1025 St-Sulpice Switzerland **H**

September 12th 2024

Co-Simulation 1D-3D

• Interest :

- ✓Hydraulic systems may experience excitation caused by complex flow patterns within various components of the system
	- ➔ Characterization of the excitation source by 3D simulations
	- **→** System response with 1D compressible model
- ✓Co-simulation of interest if strong interaction exists between excitation source and hydraulic system response in case of resonance or instability phenomena **→** excitation source modified by the hydraulic system response

Numerical Tools and Setup

- SIMSEN :
	- \checkmark 1D differential equations of momentum and continuity for compressible fluid in pipes
	- ✓ Transient scheme is Runge-Kutta 4th order
		- **→ Explicit scheme**
- CFX :
	- ✓ Reynolds Averaged Navier Stokes Equations
	- \checkmark Fluid compressibility defined by barotropic law
	- \checkmark Homogeneous ZGB cavitation model with heat transfer model as isothermal
	- ✓ SST turbulence model
	- ✓ Transient scheme is second backward Euler
		- ➔ Implicit scheme with maximum of 10 internal coefficient loops
- ANSYS-CFX can run co-simulations (from 2021R2) using Functional Mock-up Interface (FMI) technology

Water Hammer Case Study

 $CFL =$

 $a \cdot \Delta t$

 Δx

- Pipe characteristics:
	- \checkmark L = 480m, D = 0.5m, λ = 0.089
	- \checkmark 2 parts: 1D and 3D
	- \checkmark 3 wave speed combinations:
		- #1: $a_{1D} = a_{3D} = 1'444$ m/s
		- #2: $a_{1D} = a_{3D} = 150$ m/s
		- #3: $a_{1D} = 1'444$ m/s & $a_{3D} = 150$ m/s
- Co-simulation:
	- \checkmark Between 1D pipe and 3D pipe & perturbation in the 3D domain
	- \checkmark Time step simulation: $dt_{\mu_1} = 0.0015$ s, $dt_{\mu_2} = 0.015$ s and $dt_{\mu_3} = 0.003$ s
	- ✓ No subcycling ➔ exchanged data at each time step
	- \checkmark 1D model :
		- $L_{1D} = 0.8L = 383m$
		- Nb = 79 \rightarrow dx = 4.85m
		- CFL $_{\mu_1}$ = 0.446, CFL $_{\mu_2}$ = 0.464, CFL $_{\mu_3}$ = 0.969
	- \checkmark 3D model :
		- $L_{3D} = 0.2L = 97m$
		- \cdot dx = 0.4m
		- CFL $_{\mu_1}$ = 5.411, CFL $_{\mu_2}$ = 5.625, CFL $_{\mu_3}$ = 1.125

Perturbation: static pressure elevation at the outlet of the 3D domain

Exchanged Data

Validation of co-simulation

- Comparison with the reference 1D SIMSEN simulation
	- ➔ Pressure fluctuations in the middle of the pipe, i.e. in 1D domain

#1 : a1D = a3D = 1'444 m/s #2 : a1D = a3D = 150 m/s #3 : a1D = 1'444 m/s & a3D = 150 m/s

POWER VISION FNGINFFRING Vortex Shedding Resonance Case Study

- Resonance in square pipe due to von Karman vortex shedding
	- \checkmark Cavitating condition or not with setup of vacuum pump
	- \checkmark In non-cavitating condition resonance occurs with 1st pipe's eigenmode
	- \checkmark In cavitating condition, resonance occurs with 2nd pipe's eigenmode
- Test case setup by Ruchonnet N. at EPFL (PhD N°4778 2010) to validate coupled simulation without FMI protocol ⁷

Domains and Exchanged Data

Co-simulations Operating Conditions

• 4 co-simulations performed:

- ✓ Non-cavitating and out of resonance condition
- ✓ Non-cavitating and resonance condition
- ✓ Cavitating and out of resonance condition
- ✓ Cavitating and resonance condition
- Targeted resonance with :
	- \checkmark 1st eigenmode in non-cavitating condition
	- \checkmark 2nd eigenmode in cavitating condition which frequency is decreased due to cavitation

 $St =$ $f\cdot D$ $\mathcal{C}_{0}^{(n)}$ $\sigma=$ $p-p_v$ 1 2 $\rho {\cal C}^2$

9

POWER VISION Non-cavitating and out of resonance conditions \mathbf{C}

Pressure coefficient fluctuations c_p' at L=L_{TOT} = 0.5

Power spectrum density (PSD), time history and waterfall diagram

POWER VISION Non-cavitating and resonance conditions⁽¹)

Pressure coefficient fluctuations c_p' at L=L_{TOT} = 0.5

Power spectrum density (PSD), time history and waterfall diagram

Non-cavitating and resonance conditions 2

- Comparison between co-simulation and CFD simulation without coupling :
	- ✓ No difference in velocity profile
	- \checkmark Pressure pulsation due to resonance with 1D system with the co-simulation

Cavitating condition 3) (4

Pressure coefficient fluctuations c_p' at L=L_{TOT} = 0.5 Power spectrum density (PSD), time history and waterfall diagram

simulation

O_{Nd}

Cavitating condition³⁴

Waterfall diagram of Power spectrum density (PSD)

Cavitating condition

Pressure coefficient fluctuations c_p' at L=L_{TOT} = 0.5 Power spectrum density (PSD), time history and waterfall diagram

- Comparison between co-simulation and CFD simulation without coupling :
	- \checkmark No difference in velocity profile
	- ✓ Pressure pulsation due to resonance with 1D system with the co-simulation is not visible like in non-cavitating condition since maximum amplitude of the eigenmode is located in the 1D domain (L/Ltot \approx 0.4)

Conclusions

- FMI co -simulation between SIMSEN and CFX is now operational. Two case studies have been investigated to validate robustness of the FMI protocol :
	- \checkmark Pressure wave propagation through the numerical domains
	- \checkmark Resonance in cavitating condition with strong interaction between 1D model and 3D model including the excitation source
- Co -simulation could be of interest for any CFD simulations having unsteady and realistic boundary conditions driven by the 1D hydraulic system like surge tank device
- Co -simulation with SIMSEN could be extended to other physics like electromagnetics with Finite Element Analysis in electrical machines

Thank you for your attention!

Power Vision Engineering Sàrl

Rue des Jordils 40 CH-1025 St-Sulpice **E** Switzerland www.powervision-eng.ch info@powervision-eng.ch

POWER VISION ENGINEERING

Solutions & Expertise for Hydropower Transients and Operation