Understanding and optimizing drum separators using DEM

Dr. Clément Zémerli, Senior Simulation Engineer CADFEM user conference, Rapperswil15th June 2023

Bühler is part of the everyday life of billions of people

Market leadership in the industries we are active in

Our sustainability commitment

-60%

We have developed a pathway to achieve a 60% reduction of greenhouse gas emissions in our operations by 2030

(Greenhouse Gas Protocol Scope 1 & 2, 2019 baseline)

- Reducing energy consumption
- Procurement of renewable energy
- Renewable energy on site

We have committed to having solutions ready to multiply by 2025 that reduce energy, waste, and water by 50% in our customers' value chains -50%

- Services (digital)
- Increasing circularity
- Energy efficient technologies

Bühler's CO2e* emissions amount to 43.13 million tons/year

Scope 1 and 2 (own operations): 0.1 million ton | Scope 3 downstream (use of our products): 42 million tons | Scope 3 up- and downstream (Purchase goods and logistics): 1.0 million ton *Baseline 2019 | Carbon dioxide equivalent or "CO2e" is a term for describing different greenhouse gases in a common unit (CO2, N2O, CH4, etc)

Simulation is virtual prototyping – learning – testing.

Drum Magnet Separator.

Simulation goals.

Getting an optimal product distribution over the drum.

BUHLER

Simulation set up.

Product and interactions properties.

BUHLER

• Oat Grains as polyhedral shapes with 30 facets of constant size of 2.6 mm.

• **Grain-Grain**: Hysteretic linear spring contact model with normal and tangential dissipation coefficient.

• Grain-wall interaction: Inelastic collisions, Frictional interactions with the wall.

Flap of 4 kg.

BUHLER

Analytical model to estimate the optimal mass.

- One degree of freedom simplified model to ٠ estimate the angle and the throughput.
- The damping coefficients and contact ٠ force can be calibrated to fit with the simulation model.
- Model used to estimate an optimized mass ٠ based on desired inclinaison angle and throughput.

[s]

Influence of the flap weight.

-0.388

-0.5 0 0.5

1.5

-0.388

-0.5 0 0.5 1 1.5

3.5

2.5

4 4.5 5 5.5 Time (s) 6.5

Footer of the presentation

8.5

7.5

Flap of 4.6 kg.

Footer of the presentation

Flap 4.6kg – Sheet Deflector vs Cone distributor

Particle mass distribution in width

Flap 4.6kg – Sheet Deflector vs Cone distributor

BUHLER

Biggest separator size with 20 million particles.

Calculation time and hardware ressource.

- Simulation cases from 3M to 20M particles depending on machine size.
- 2-GPU Nvidia A100 40 GB RAM.
- Simulated time of 10s.

Conclusion and next steps.

- Particle simulation with Rocky DEM as key technology for drum separators
 - Try virtually and save development costs and time,
 - Optimize design parts such as weight flap or inlet distribution,
 - Understand and quantify complex flow behavior.
- Prototype tests ongoing for further validation.

Aknowledgements to James Maari, Matej Tomka, Pavel Korous, Richard Vonlanthen for their great contribution.

INNOVATIONS FOR A BETTER WORLD