Our experience in developing an in silico clinical trial in the medical device industry

Philippe Favre, PhD **Research Associate Director** Switzerland

ZIMMER BIOMET Moving You Forward."

CADFEM ANSYS SIMULATION CONFERENCE RAPPERSWIL 2023 15. June 2023

Medtech industry

Mission: improve the patients' quality of life Significant potential for hazards Manufacturer must demonstrate safety and efficacy

Establish product safety and efficacy

Worst-case identification

FEA - Finite element analysis

1 physical test of worst-case

Establish product safety and efficacy

Challenges with clinical data acquisition

Increasing burden to effectively provide clinical data to satisfy expanding regulatory requirements (ex. EU MDR)

- 1. Difficult to find patients for
 - rare demographics (eg. XS and XL patients)
 - rare use (rare pathologies)
 - rare surgical procedure (hemiarthroplasty)
- 2. Drop rate
- 3. Different clinical studies can be required for variants of a same implant

Concept of in silico clinical trials (ISCT)

In Silico Methods are here

Clinical In silico

Aseptic loosening \leftrightarrow Micromotion and interface strain

Stem subsidence \leftrightarrow Permanent displacement

Bony atrophy/hypertrophy ↔ Change in bone stress

Intra/post OP bone fracture ↔ Bone ultimate/fatigue stress

Stem fracture ↔ Implant fatigue stress

Impingement/dislocation ↔ Range of motion

VARIABILITY ↔ VARIABILITY

Regulatory submission

Execute

Regulatory submission

Benefits for everyone

- \rightarrow Increases confidence in expected device performance
- \rightarrow Leads to safer and better products
- \rightarrow Gets product to patients, faster
- \rightarrow Reduces cost throughout healthcare system

Benefits patients, healthcare system, industry and regulators

Financial considerations

- Personnel
- Software licenses
- Data storage
- Acquisition of clinical data for validation

- Reduction on clinical study costs
- Reduction of risk of recall
- Earlier launch

Model development costs

Cost savings (less patients, less variants, shorter follow up)

The journey towards ISCT in a regulatory submission

Execute

Regulatory submission

The journey towards ISCT in a regulatory submission

Execute

Regulatory submission

Clinical outcome measures

- Radiolucency
- Osteolysis
- Stem subsidence
- Bony atrophy/hypertrophy
- Osteophytes formation
- Heterotopic Ossification grade (Brooker
 Patient satisfaction grading)

- Polyethylene wear
- Pain
- Strength at 90° Abduction
- Assessment of Daily Activities
- Joint instability

- Scapular Not
- Range of mot
- Rotator cuff Detects
- Osteoarthritis progression in the glenoid (hemi)
- Intraoperative bone fracture
- Component disassembly
- Polyethylene dislocation / disassembly

- Which patient harms do we include in an ISCT?
 - Superficial Infection
 - Deep Vein Thrombosis
 - Delayed Wound Healing
 - Dislocation
 - Fracture of Glenoid
 - Fracture of Humeral Neck

 Fracture of Humeral Shaft Fracture of Proximal Humerus Glenoid Implant Fracture Glenoid Implant Loosening Humeral Implant Fracture Humeral Implant Loosening

 Polyethylene Fracture Skin Slough Subluxation Vascular Deficit Wound Dehiscence • Wound Drainage

What risks to include in ISCT?

Decision based on existing standards and published data, where applicable

Risk management

National Registries

Medical devices - Application of risk management to medical devices

Complaints

Literature

EMICO

Decision tree

	high	
m		
ty		high

Can risk be simulated/is risk impacted by implant design

Example: stress shielding

JSES 2003

The journey towards ISCT in a regulatory submission

Execute

Regulatory submission

The journey towards ISCT in a regulatory submission

Regulatory submission

Execute

Model validation

Well controlled and characterized data

Increasing consideration of in vivo variability

Model validation

Well controlled and characterized data

Increasing consideration of in vivo variability

ISCT Model validation

Model validation strategy

Clinical validation	 Clinical literature data PMCF data 			
Benchtop validation	 Technical literature data Internal test data 			
Model verification	Mesh convergenceBuddy checks			
Code verification	- Unit tests			

- Software quality assurance

Clinical comparator:

- predicted appropriately
- Reproduce clinically significant differentiation in outcomes b/w different designs, variants, sizes, etc

Benchtop comparator:

- Ensure physics are modeled correctly
- Best addressed with tight control over test conditions

Ensure aspect of implant survivorship can be

Model validation

Model validation strategy

Clinical validation

Benchtop validation

Model verification

Code verification

- Clinical literature data PMCF data
- Technical literature data Internal test data
- Mesh convergence Buddy checks
- Unit tests Software quality assurance

Patient risks

Adapter dissociatio

Scapular notching

Humeral loosening

Stress shielding

- [1] Internal benchtop testing
- [2] Roche et al., JSES 2009
- [3] Internal benchtop testing
- [4] Eberle et al., Med Eng Phys 2013
- [5] Simovitch et al., JBJS 2007 Statistically significant relationship of PSNA, DSNA, and PGRD on the incidence of scapular notching (N=186, Delta III)
- [6] Morwood et al., JSES 2017 Increased incidence of humeral loosening for grit blast stems as compared to porous coating (N=118, Aequalis Ascend stems)
- [7] Nagels et al., JSES 2003 Greater relative stem size results in increased proximal lateral humeral cortical thinning (N=70, Biomodular stems)

	Benchtop	Clinical
on	[1]	N/A
	[2]	[5]
J	[3]	[6]
	[4]	[7]

Benchtop testing – humeral loosening

Comparator

Model

n=6

Comparison

Clinical validation – humeral loosening

Comparator

Statistically significant higher incidence of radiolucencies and risk of stem loosening with gritblasted stems compared to porous coated stems @ 2+ years post-op (N=34).

Morwood et al., JSES 2017

Model

N=18 **Comprehensive Micro**

Sensitivity Friction coefficient Mesh size Loading Contact stiffness Bone mat prop etc

Significantly higher interface micromotions with low friction coefficient (grit-basted) compared to high friction coefficient (porous-coating).

Comparison

Percentage of models with a micromotion above 200 and 350µm compared well with % of patients with radiolucencies and at risk of stem loosening.

Model Credibility

ASME V&V40							
Activity Credibility factor		Low		Loosening	Stress shielding	Scapular notching	
Validation	Computational model	Model form	Depresentative configuration	uration Comprehensive variability High			
		Model inputs	Representative configuration				
	Comparator	Test samples	Clinical trends	Statistical significance			
		Test conditions	Key attributes not measured, spanning limited range	Key attributes measured, spanning clinical conditions range			
	Assessment	Equivalency of input	Consistency in ranges				
		Output comparison	Qualitative agreement	Quantitative agreement			
	Applicability	Relevance of val activities to COU	Similar device	Subject device			
Verification							
Credibility							

Execute

30

The Regulatory Environment is Receptive

Avicenna Alliance

Association for Predictive Medicine

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. X, XXX 201X 1

TOWARD A REGULATORY PATHWAY FOR THE USE OF IN SILICO TRIALS IN THE CE MARKING OF MEDICAL DEVICES

Francesco Pappalardo, John Wilkinson, Francois Busquet, Antoine Bril, Mark Palmer, Barry Walker, Cristina Curreli, Giulia Russo, Thierry Marchal, Elena Toschi, Rossana Alessandrello, Vincenzo Costignola, Ingrid Klingmann, Martina Contin, Bernard Staumont, Matthias Woiczinski, Christian Kaddick, Valentina Di Salvatore, Alessandra Aldieri, Liesbet Geris, and Marco Viceconti

The Regulatory Environment is Receptive

Assessing the Credibility of **Computational Modeling and Simulation in Medical Device** Submissions

Draft Guidance for Industry and Food and Drug Administration Staff

In Silico Clinical Trials. In silico clinical trials are an application of CM&S where device performance is evaluated using a 'virtual cohort' of simulated patients with realistic anatomical and physiological variability representing the indicated patient population. In silico clinical trials can complement real world clinical trials (e.g., augment or reduce the size of, or provide improved inclusion-exclusion criteria), rather than replace them.¹²

The VICTRE trial: an in-silico replica of a clinical trial for evaluating digital breast tomosynthesis as a replacement for full-field digital mammography

Front Med (Lausanne). 2018; 5: 241. Published online 2018 Sep 25. doi: 10.3389/fmed.2018.00241 PMCID: PMC6167449 PMID: 30356350

Advancing Regulatory Science With Computational Modeling for Medical Devices at the FDA's Office of Science and Engineering Laboratories

Tina M. Morrison.* Pras Pathmanathan. Mariam Adwan, and Edward Margerrison

An FDA Viewpoint on Unique Considerations for Medical-Device Clinical Trials

Owen Faris, Ph.D., and Jeffrey Shuren, M.D., J.D.

In the future, computer-based modeling may change the way we think about device validation in other ways, allowing for much smaller clinical trials, or may change the way we think about running trials, in that some "clinical" information may be derived from simulations.

FDA U.S. FOOD & DRUG ADMINISTRATION

MARCH 14, 2019

The NEW ENGLAND JOURNAL of MEDICINE

REVIEW ARTICLE

THE CHANGING FACE OF CLINICAL TRIALS effrey M. Drazen, M.D., David P. Harrington, Ph.D., John J.V. McMurray, M.D., James H. Ware, Ph.D. and Janet Woodcock, M.D., *Editors*

Towards regulatory approval

Chances of acceptance by the regulator increased by:

Following guidelines for clinical studies and computational modelling

[ISO 14155. Clinical investigation of medical devices for human subjects — Good clinical practice, 2011.]

[Guidance for Industry and Food and Drug Administration Staff. Reporting of Computational Modeling Studies in Medical Device Submissions, 2016.]

[ASME V&V40]

[DRAFT - Guidance for Industry and Food and Drug Administration Staff. Assessing the Credibility of Computational Modeling and Simulation in Medical Device Submissions. 2021.]

Open and regular communication with the regulator

INTERNATIONAL STANDARD

ISO 14155

Second edition 2011-02-01

Clinical investigation of medical devices for human subjects — Good clinical practice

Investigation clinique des dispositifs médicaux pour sujets humains — Bonnes pratiques cliniques

Reporting of Computational Modeling Studies in Medical Device Submissions

Guidance for Industry and Food and Drug Administration Staff

Document issued on: September 21, 2016.

The draft of this document was issued on January 17, 2014.

For questions about this document, contact Tina M. Morrison, Ph.D., Division of Applied Mechanics, Office of Science and Engineering Laboratories, (301) 796-6310, tina morrison/dfd.hhs gov.

FDA U.S. FOOD & DRUG ADMINISTRATION CENTER FOR DEVICES & RADIOLOGICAL HEALTH J.S. Department of Health and Human Services Food and Drug Administration Center for Devices and Radiological Health Office of Device Evaluation Office of Science and Engineering Laboratories Reference number ISO 14155:2011(E)

© ISO 2011

Conclusions

- Strong interest from scientific community, industry and regulators in ISCT the time is now!
- Still many novel aspects
 - Identify the risks to be included \rightarrow approach based on data
 - Validation against clinical comparator \rightarrow ASME V&V40 standard philosophy is adaptable to clinical comparator
 - Submission to Regulatory body \rightarrow ongoing
- Standardization for ISCT is greatly needed (e.g. ASME V&V40, FDA V&V draft guidance, Avicenna)

THANK YOU!

